Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 378: 112256, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31614187

RESUMO

Zebrafish are becoming a species of choice in psychopharmacology, laying a promising path to refined pharmacological manipulations and high-throughput behavioral phenotyping. The field of robotics has the potential to accelerate progress along this path, by offering unprecedented means for the design and development of accurate and reliable experimental stimuli. In this work, we demonstrate, for the first time, the integration of robotic predators in place conditioning experiments. We hypothesized zebrafish to be capable of forming a spatial association under a simulated predation risk. We repeatedly exposed experimental subjects to a robotic heron impacting the water surface and then evaluated their spatial avoidance within the experimental tank in a subsequent predator-free test session. To pharmacologically validate the paradigm, we tested zebrafish in drug-free conditions (control groups) or in response to three different concentrations of citalopram (30, 50, and 100 mg/L) and ethanol (0.25, 0.50, and 1.00%). Experimental data indicate that, when tested in the absence of the conditioning stimulus, zebrafish displayed a marked preference for the bottom of the test tank, that is, the farthest location from the simulated attacks by the robotic heron. This conditioned geotaxis was reduced by the administration of citalopram in a linear dose-response curve and ethanol at the low concentration. Ultimately, our data demonstrate that robotic stimuli may represent valid conditioning tools and, thereby, aid the field of zebrafish psychopharmacology.


Assuntos
Associação , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Citalopram/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Etanol/farmacologia , Medo/efeitos dos fármacos , Robótica , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Comportamento Espacial/efeitos dos fármacos , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Citalopram/administração & dosagem , Desenho de Equipamento , Etanol/administração & dosagem , Feminino , Masculino , Comportamento Predatório/fisiologia , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Peixe-Zebra
2.
PeerJ ; 7: e7893, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637136

RESUMO

Zebrafish (Danio rerio) have recently emerged as a valuable laboratory species in the field of behavioral pharmacology, where they afford rapid and precise high-throughput drug screening. Although the behavioral repertoire of this species manifests along three-dimensional (3D), most of the efforts in behavioral pharmacology rely on two-dimensional (2D) projections acquired from a single overhead or front camera. We recently showed that, compared to a 3D scoring approach, 2D analyses could lead to inaccurate claims regarding individual and social behavior of drug-free experimental subjects. Here, we examined whether this conclusion extended to the field of behavioral pharmacology by phenotyping adult zebrafish, acutely exposed to citalopram (30, 50, and 100 mg/L) or ethanol (0.25%, 0.50%, and 1.00%), in the novel tank diving test over a 6-min experimental session. We observed that both compounds modulated the time course of general locomotion and anxiety-related profiles, the latter being represented by specific behaviors (erratic movements and freezing) and avoidance of anxiety-eliciting areas of the test tank (top half and distance from the side walls). We observed that 2D projections of 3D trajectories (ground truth data) may introduce a source of unwanted variation in zebrafish behavioral phenotyping. Predictably, both 2D views underestimate absolute levels of general locomotion. Additionally, while data obtained from a camera positioned on top of the experimental tank are similar to those obtained from a 3D reconstruction, 2D front view data yield false negative findings.

3.
Front Robot AI ; 6: 71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33501086

RESUMO

Social learning is ubiquitous across the animal kingdom, where animals learn from group members about predators, foraging strategies, and so on. Despite its prevalence and adaptive benefits, our understanding of social learning is far from complete. Here, we study observational learning in zebrafish, a popular animal model in neuroscience. Toward fine control of experimental variables and high consistency across trials, we developed a novel robotics-based experimental test paradigm, in which a robotic replica demonstrated to live subjects the correct door to join a group of conspecifics. We performed two experimental conditions. In the individual training condition, subjects learned the correct door without the replica. In the social training condition, subjects observed the replica approaching both the incorrect door, to no effect, and the correct door, which would open after spending enough time close to it. During these observations, subjects could not actively follow the replica. Zebrafish increased their preference for the correct door over the course of 20 training sessions, but we failed to identify evidence of social learning, whereby we did not register significant differences in performance between the individual and social training conditions. These results suggest that zebrafish may not be able to learn a route by observation, although more research comparing robots to live demonstrators is needed to substantiate this claim.

4.
Zebrafish ; 15(5): 433-444, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30070967

RESUMO

One commonly used method to preserve individual identity in the study of social behavior of zebrafish is through silicone-based visible implant elastomers (VIEs), which represent a safe and durable tagging procedure. While the effects of VIE tagging on welfare and general health have been addressed in detail, whether this procedure influences social behavior remains unclear. In this study, we compared individual and group behaviors exhibited by shoals composed of three individuals: two nontagged and one (focal subject) that was either nontagged (control condition) or sham-, purple-, blue-, or yellow tagged. Traditional behavioral parameters of activity, shoaling, and schooling (speed, polarization, and interindividual distances), along with an information-theoretic measure of social interaction (transfer entropy), were used to study the effect of tagging. Our findings indicate that tagging procedure per se significantly increased individual speed of the tagged subjects and of the group. The tagging procedure also altered the level of interaction between individuals, measured by transfer entropy. Conversely, tagging procedure did not influence shoaling and schooling tendencies. These findings suggest that VIE tagging may elicit some level of stress, which may affect some behavioral responses more than others. We recommend use of alternative methods such as multitracking systems when possible.


Assuntos
Comportamento Animal/fisiologia , Elastômeros , Comportamento Social , Peixe-Zebra/fisiologia , Animais , Silício/química
5.
PLoS One ; 8(10): e77943, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24147101

RESUMO

Group-living is widespread among animals and one of the major advantages of group-living is the ability of groups to solve cognitive problems that exceed individual ability. Humans also make use of collective cognition and have simultaneously developed a highly complex language to exchange information. Here we investigated collective cognition of human groups regarding language use in a realistic situation. Individuals listened to a public announcement and had to reconstruct the sentence alone or in groups. This situation is often encountered by humans, for instance at train stations or airports. Using recent developments in machine speech recognition, we analysed how well individuals and groups reconstructed the sentences from a syntactic (i.e., the number of errors) and semantic (i.e., the quality of the retrieved information) perspective. We show that groups perform better both on a syntactic and semantic level than even their best members. Groups made fewer errors and were able to retrieve more information when reconstructing the sentences, outcompeting even their best group members. Our study takes collective cognition studies to the more complex level of language use in humans.


Assuntos
Cognição/fisiologia , Comportamento Cooperativo , Idioma , Adulto , Feminino , Humanos , Masculino , Semântica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...